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Abstract

We study a new class of infinite-dimensional Lie algebBntas(N, , N_) generalizing the standard
W algebra, viewed as a tensor operator algebra of SU(ih a group-theoretic framework. Here we
interpretW,. (N, N_) either as an infinite continuation of the pseudo-unitary symnigfty, , N_),
or as a “highe/(N,, N_)-spin extension” of the diffeomorphism algebra dif(, N_) of the N =
N, + N_ torusU(1)V. We highlight this higher-spin structure ®%,,(N,, N_) by developing the
representationtheory 6f(NV,., N_) (discrete series), calculating higher-spin representations, coherent
states and deriving&hler structures on flag manifolds. They are essential ingredients to define operator
symbols and to infer a geometric pathway between these generélizesymmetries and algebras
of symbols ofU(N,., N_)-tensor operators. Classical limits (Poisson brackets on flag manifolds) and
quantum (Moyal) deformations are also discussed. As potential applications, we comment on the
formulation of diffeomorphism-invariant gauge field theories, like gauge theories of higher-extended
objects, and non-linear sigma models on flag manifolds.
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1. Introduction

The long sought-for unification of all interactions and exact solvability of (quantum) field
theory and statistics parallels the quest for new symmetry principles. Symmetry is an essen-
tial resource when facing those two fundamental problems, either as a gauge guide principle
or as a valuable classification tool. The representation theory of infinite-dimensional groups
and algebras has not progressed very far, except for some important achievements in one
and two dimensions (mainly Virasorpy,, and Kac—Moody symmetries), and necessary
breakthroughs in the subject remain to be carried out. The ultimate objective of this pa-
per is to create a stepping stone to the development of a new class of infinite-dimensional
symmetries, with potential useful applications in (quantum) field theory.

The structure of the proposed infinite symmetries resembles the one of the soalled
algebras. In the last decade, a large body of literature has been devoted to the 3tidy of
algebras, and the subject still continues to be fruitful. These algebras were firstintroduced as
higher-conformal-spin > 2 extension§l] of the Virasoro algebra (= 2) through the op-
erator product expansion of the stress-energy tensor and primary fields in two-dimensional
conformal field theory)V-algebras have been widely used in two-dimensional physics,
mainly in condensed matter, integrable models (Korteweg—de Vries, Toda), phase tran-
sitions in two dimensions, stringy black holes and, at a more fundamental level, as the
underlying gauge symmetry of two-dimensional gravity models generalizing the Virasoro
gauged symmetry in the light-cone discovered by PolydRply adding spin > 2 currents
(see e.g[3-5] for a review). Only when alls{— oo) conformal spins > 2 are considered,
the algebra (denoted By/..) is proven to be of Lie type; moreover, currents of spia 1
can also be includef®], thus leading to the Lie algebi& ., which plays a determining
role in the classification of all universality classes of incompressible quantum fluids and the
identification of the quantum numbers of the excitations in the quantum Hall §ffect

The process of elucidating the mathematical structure underliimdgebras has led to

various directions. Geometric approaches identify the classicat Q) limit wo, of Woo
algebras with area-preserving (symplectic) diffeomorphism algebras of two-dimensional
surfaceg8,9]. These algebras possess a Poisson structure, and it is a current topic of great
activity to recover the “quantum commutator’, ] from (Moyal-like) deformations of
the Poisson brackst, -}. There is a group-theoretic structure underlying these quantum
deformationg10], according to whichV,, algebras are just particular members of a one-
parameter familyWs,(c) of non-isomorphid11,12]infinite-dimensional Lie-algebras of
SU(4, 1) tensor operators (when “extended beyond the wefd®'or “analytically contin-
ued”[13]). The (field-theoretic) connection with the theory of higher-spin gauge fields in
(1+ 1)- and (24 1)-dimensional anti-de Sitter space AQS-15]- homogeneous spaces
of SO(], 2) ~ SU(4, 1)and SO(22) ~ SU(Z, 1) x SU(L, 1), respectively —is then apparent
within this group-theoretical context. Also, the relationship between area-preserving dif-
feomorphisms ani!V, algebras emerges naturally in this group-theoretic picture; indeed,
itis well known that coadjoint orbits of any semisimple Lie group like SU(1~ SL(2, R)
(cone and hyperboloid of one and two sheets) naturally define a symplectic manifold, and
the symplectic structure inherited from the group can be used to yield a Poisson bracket,
which leads to a geometrical approach to quantization. From an algebraic point of view, the
Poisson bracket is the classical limit of the quantum commutator of “covariant symbols”
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(see next section). However, the essence of the full quantum algebra is captured in a classical
construction by extending the Poisson bracket to Moyal-like brackets. In particular, one can
reformulate the (cumbersome) problem of calculating commutators of tensor operators of
su(l 1) in terms of (easier to perform) Moyal (deformed) brackets of polynomial functions

on coadjoint orbit€) of SU(Z, 1). A further simplification, that we shall use, then consists

of taking advantage of the standard oscillator realizgtof) of the semisimple Lie algebra
generators and replacing non-canoni@al 2) by Heisenberg bracke(d.5).

Going from three-dimensional algebras su(2) and sli(tb higher-dimensional pseudo-
unitary algebras sW, N_) entails non-trivial problems. Actually, the classification and
labelling of tensor operators of Lie groups other than SWjAnd SU(2) is notan easy taskin
general. Inthe lettdd 6], the author put forth aninfinite s, (N4, N_) of tensor operators
of U(N4, N_) and calculated the structure constants of this quantum associative operator
algebra by taking advantage of the oscillator realization ofU(%';., N_) Lie-algebra,
in terms of N = N, + N_ boson operators [see E@.4)], and by using Moyal brackets.
Operator labelling coincides here with the standard Gel'fand—Weyl pattern for vectors in
the carrier space of unirreps of(N) (see later on Sectiob.2). Later on, the particular
case oW (2, 2) was identified if17] with a four-dimensional analogue of the Virasoro
algebra, i.e. an infinite extension (“promotion or analytic continuation” in the serj$81pf
of the finite-dimensional conformal symmetry SU2} ~ SO(4 2) in (3+ 1) dimensions.

Also, W (2, 2) was interpreted as a higher-conformal-spin extension of the diffeomorphism
algebra diff(4) of vector fields on a four-dimensional manifold (jusVgs is a higher-

spin extension of the Virasoro diff(1) algebra), thus constituting a potential gauge guide
principle towards the formulation of induced conformal gravities (Wess—Zumino—-Witten-
like models) in realistic dimensiorj48]. For completeness, let us say th&t,-algebras

also appear as central extensions of the algebra of (pseudo-)differential operators on the
circle [19], and higher-dimensional analogues have been constructed in that d@0ext
however, we do not find a clear connection with our construction.

In this article the aim is to infer a concrete pathway between these natural (algebraic)
generalizationsV (N4, N_) of Wx, and infinite higher-spin algebras of(N,, N_)
operator symbols, using the coherent-state machinery and tools of geometric and Berezin
guantization. In order to justify the view 0V (N4, N_) as a “higher-spin algebra” of
U(N4, N_),we shall develop the representation theory/ @V, N_), calculating arbitrary-
spin coherent states and derivingler structures on flag manifolds, which are essential
ingredients to define operator symbols, star-products and to compute the leading order
(h — 0, or large quantum numbers) structure constants of star-commutators in terms of
Poisson brackets on the flag space. Actually, the structure constants calcu[a&dnare
restricted to a class of irreducible representations given by oscillator representations. Here
we show how to deal with the general case.

Throughout the paper, we shall discuss either classical limits of quantum structures
(Poisson brackets from star-commutators) or quantum deformations of classical objects
(Moyal deformations of oscillator algebras).

We believe this paper touches a wide range of different algebraic and geometric structures
of importance in Physics and Mathematics. Our main objective is to describe them and to
propose interconnections between them. Therefore, except for SBatibich summarizes
some basic definitions and theorems found in the literature, we have rather preferred to
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follow a fairly descriptive approach throughout the paper. Perhaps pure Mathematicians
will miss the “Theorem-Proof” procedure to present some of the particular results of this
work, but I hope our plan will make the presentation more dynamic and will result in greater
dissemination of the underlying ideas and methods.

The organization of the paper is as follows. Firstly we set the general context of our
problem and remind some basic theorems and notions on the representation theory of Lie
groups (in particular, we focus on pseudo-unitary groups) and geometric structures derived
fromit. In Sectior3 we exemplify the previous structural information with the case of three-
dimensional underlying algebras su(2) and saj1their tensor operator algebras, classical
limits, Lie—Poisson structures and their relevance in la¥geatrix models (and relativistic
membranes) ani(11) invariant theories. In Sectios we extend these constructions
to general pseudo-unitary groups and we show how to build “generalizedlgebras”
weo(N4, N_) and to compute their quantum (Moyal) deformatidtis, (N, N_) through
oscillator realizations of the(Ny, N_) Lie algebra. Then, in Sectioh we introduce a
local complex parametrization of the coset representativesVHU((1)N = Fy_1 (flag
space), we construct coherent states and derakdéds structures on flag manifolds. They
are essential ingredients to discuss symbolic calculus on flag manifolds, and to highlight the
higher-spin structure of the algebré., (N4, N_). In Section6 we make some comments
on the potential role of these infinite-dimensional algebras as residual gauge symmetries of
extended objects V(N — 1)-branesFy_1") in the light-cone gauge, and formulate non-
linear sigma models on flag manifolds. Sectibis devoted to conclusions and outlook.

2. The group-theoretical backdrop

Let us start by fixing notation and reminding some definitions and results on group,
tensor operator, Poisson-Lie algebras, coherent states and symbols of a LigGgioup
particular, we shall focus on pseudo-unitary groups:

G =U(N4, N-) = {g € Myxn(C)/.gAgl = A}, N=Ni+N_, (2.1)

that is, groups of compleX’ x N matricesg that leave invariant the indefinite metric
A =diag(1 ... N+, 1, —1,...N-, —1). The Lie-algebrg is generated by the step operators
&g!

G =u(Ny, N_) = (X5 with (xB)) = hs)sh e, B v=1,..., N), (2.2)

a“uwr

(we introduce the Planck constanfor convenience) with commutation relations:

[XFr, XP2] = n(sfi kP2 — sf2XP). (2.3)

ay’

There is a standawgdcillator realization of these step operators in terms\dboson operator
variables ¢, a#), given by:

Xj=alal,  [afafl=nsfl. aB=1..N, (2:4)
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which reproduce§2.3) (we use the metriei to raise and lower indices). Thus, for unitary
irreducible representations 6f( N+, N_) we have the conjugation relation:

(XE)T = APEXY A (2.5)
(sum over doubly occurring indices is understood unless otherwise stated). Sometimes it
will be more convenient to use the generatiigg = A, X’; instead ofX%, for which the

conjugation relatiorf2.5) is simply written asfflﬁ = 5(,3(1, and the commutation relations
(2.3)adopt the form:

[Xotu‘}l» Xotzﬂz] = h(Aazﬂlxalﬁz - Aalﬂzxa2ﬂ1)~ (2.6)

The oscillator realizatio2.4) of u(N,., N_)-generators will be suitable for our purposes
later on.

Definition 2.1. Let g® be the tensor algebra ovgr andZ the ideal ofG® generated by
[X, Y] - (X®Y — Y ® X), whereX, Y € G. The universal enveloping algelinég) is the
quotientG® /.

[From now on we shall drop th@ symbol in writing tensor products.]

Theorem 2.2 (Poincaré-Birkhoft-Witt). The monomials Xy, -+ X, , with k; > 0,
Sform a basis of U(G).

Casimir operators are especial elementg(6f), which commute with everything. There
are N Casimir operators fol/(Ny, N_), which are written as polynomials of degree
1,2,..., N of step operators as follows:

Ci=Xe,  Cr= KRG, Ca= RERRE, 2.7)

The universal enveloping algebt4G) decomposes intfuctor or quotient Lie algebras
W.(G), with ¢ = (c1, . . ., cy) an arbitrary N-dimensional complex vector, as follows. Let

N
I = Z(éa — h¥ca)U(G)

a=1

be the ideal generated by the Casimir operafgrsThe quotientV,(G) = U(G)/Z. is a
Lie algebra. Roughly speaking, this quotient means that we rejgladey the complex
c-numberC, = h%c, whenever it appears in the commutators of element4Gf.

Definition 2.3. We shall refer to/V,.(G) as ac-tensor operator algebra.
According to Burnside’s theoreif21], for some critical values, = c&o), the infinite-

dimensional Lie algebray,.(G) “collapses” to a finite-dimensional one. In a more formal
language:
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Theorem 2.4 (Burnside). When ¢y, @ = 1, ..., N coincide with the eigenvalues of Cy in
a d.-dimensional irrep D. of G, there exists an ideal x C W.(G) such that W.(G)/x =
sl(d., C), or su(d,), by taking a compact real form of the complex Lie algebra.

Another interesting structure related to the previous one igihe C*-algebra C*(G)
[in order to avoid some technical difficulties, let us restrict ourselves to the corGase
in the next discussion]:

Definition 2.5. Let C*°(G) be the set of analytic complex functiotson G,
CG)={¥:G— C,g— ¥(9). (2.8)

The group algebr@*(G) is aC*-algebra with an invariant associatiweoroduct (convolu-
tion product)

(W % W)(g) = /G A gW(g) ¥ (s o g). (2.9)

(g ® ¢’ denotes the composition group law arldgcstands for the left Haar measure) and
an involution¥*(g) = (g~ 1).

The conjugate spad®(G) of C*°(G) consists of all generalized functions with compact
supports. The spadéo(G) of all regular Borel measures with compact supportis a subspace
of R(G). The sefR(G, H) of all generalized functions aiwith compact supports contained
in a subgrou also forms a subspace &{G). The following theorem (se1]) reveals
a connection betweeR(G, {¢}) [e € G denotes the identity element] and the enveloping
algebra:

Theorem 2.6 (L. Schwartz).The algebra R(G, {e}) is isomorphic to the enveloping algebra
Ug).

This isomorphism is apparent when we realize the Lie algéltraleft invariant vector
fields X~ on G and consider the mappiy: G — R(G), X > &3, defined by the formula

(@3|¥) = (XLw)(e) V¥ e C®(G), (2.10)

where(®|V¥) = fG dg 5(g)W(g) denotes a scalar product anti{¥)(e) means the action
of XL on ¥ restricted to the identity elemeate G. One can also verify the relation

(@g, % Dy [W) = (X] - XpW)(e) V¥ e C™(G), (2.11)

1
between star products iR(G) and tensor products (G):

Let us comment now on the geometric counterpart of the previous algebraic structures,
by using the language of geometric quantization.

The classical limit of the convolution commutatek, [P'] = ¥ = ¥/ — ¥’ x W corre-
sponds to the Poisson-Lie bracket

oy Y
0Xa1 81 0Xarnpy
(2.12)

. i .
(v, I,0/}PL(g) = "liino ﬁ[ll’, lI//](g) = '(Aazﬂlxwlﬂz - Aalﬂzxazﬂl)



M. Calixto / Journal of Geometry and Physics 56 (2006) 143—174 149

between smooth functiong € C*°(G*) on the coalgebrg*, wherex.g, o, 8 =1,..., N
denote a coordinate system in the coalgefifa= u(N,, N_)* >~ RNZ, seen as av?-
dimensional vector space. The “quantization map” reladinandy is symbolically given
by the expression:

™o DICI0
W(g) = /g o@D (2.13)

whereg = exp(X) = expa Xup) is an element off and® = 6,0 is an element of*.
The constraint€y(x) = Co = h”"cy defined by the Casimir operatof3.7) (written in
terms of the coordinates instead ofX,g) induce a foliation

g ~|Joc (2.14)
C

of the coalgebrg™ into leavesD¢: coadjoint orbits, algebraic (flag) manifolds (see later on
Sectionb). This foliation is the (classical) analogue of the (quantum) standard Peter—Weyl
decomposition (seR2]) of the group algebr&*(G):

Theorem 2.7 (Peter—Weyl)Let G be a compact Lie group. The group algebra C*(G)
decomposes,

C*(G) =~ P W:(9). (2.15)
ce6

into factor algebras W.(G), where G denotes the space of all (equivalence classes of)
irreducible representations of G of dimension d..

The leave$)¢ admita symplectic structur@g, £2¢), where2¢ denotes a closed 2-form
(a Kahler form), which can be obtained from @ller potentialk ¢ as:

32Kc(Z, 2)

= dzgp A Uzgy = .Qoé ;m)(z, z) Uzgp A zgy, (2.16)
02ap0Z0v

Qc(z.2) =

wherezq.g, o > B denotes a system of complex coordinate®in(see later on Sectids 1).
Afterthe foliation ofC>°(G*) into Poisson algebras™> (O(), the Poisson bracket induced

on the leave®)¢ becomes:

Iy (2, 2) (2, 2)

0Za1 1 8Z_a2/32

Wi ¥mle(z, 2) = Z ‘leﬁl;azﬂz(z’ 2)
aj>p;

=Y V(2 2).

(2.17)

The structure constants f¢2.17) can be obtained through the scalar prodyigt(c) =
(W l{v7, v, ) p), with integration measur.18) when the sefy;} is chosen to be or-
thonormal.
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Toeachfunctiony € C*°(Oc¢), one can assign its Hamiltonian vector fiélg = {1, -} p,
which is divergence-free and preserves de natural volume form

duc(z.2) = (—1)<2> ,71| "(z2,2), 20 =dim@c). (2.18)

In general, any vector field obeyingL y 2 = O (With Ly = iy o d + d o iy the Lie deriva-
tive) is called locally Hamiltonian. The space LHa®)(of locally Hamiltonian vector fields
is a subalgebra of the algebra sdiffj(of symplectic (volume-preserving) diffeomorphisms
of 0, and the space Har@¥ of Hamiltonian vector fields is an ideal of LHaf). The two-
dimensional case difl) = 2 is special because sdiffj = LHam(0), and the quotient
LHam(Q)/Ham(@) can be identified with the first de-Rham cohomology clH3$0, R)
of OviaH — iygf2.

Poisson and symplectic diffeomorphism algebrafef = $2 andO¢_ = St (the
sphere and the hyperboloid) appear as the classical limit [shalld large (conformal-)
spine+ = s(s & 1), so that the curvature radigs. = h%c.. remains finite]:

Jim W, (su(2))~ C>(5?) ~ sdiff (5%) ~ su(o),
h—0
Alim We_(su(L 1)) ~ €*(s™1) ~ sdiff(S"1) ~ suo, 00) (2.19)
h—0
of factor algebras of SU(2) and SU(), respectively (sef 3,12).

Letus clarify the classical limit®.19)by making use of theperator (covariant) symbols
[24]:

L(z,7) = (ezlLlez), L e W(9), (2.20)
constructed as the mean value of an operatar.(G) in the coherent statez) (see later
on Sectiorb.2for more details). Using the resolution of unity:

/ lcu) (cu| duc(u, u) =1 (2.21)
Oc

for coherent states, one can define the so-caliedmnultiplication of symbols L] x L5 as
the symbol of the produdt1L2 of two operatorsL1 andLly:

(Lg% LYz, 2) = (czlLalolez) = /@ LS (. @)Ly, 2) e~ dp(u, 1), (2.22)
C

where we introduce the non-diagonal symbols

cz|L|cu)

L°(z, ) = (2.23)

(cz|cu) ’

1 The approximation sdiff{?) ~~ su(o) is still not well understood and additional work should be done towards
its satisfactory formulation. If23] the approach to approximate sdif) and sdiff("'2) by limy_, o, Su(v) was
studied and a weak uniqueness theorem was proved; however, whether choices of sets of basis functions on spaces
with different topologies do in fact correspond to distinct algebras deserves more careful study.
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andsf(z, u) = —In|(cz|cu)|? can be interpreted as the square of the distance between the
pointsz, u on the coadjoint orbiQ¢. Using general properties of coherent st4%, it

can be easily seen ths&(z, u) > 0 tends to infinity withc — oo, if z # u, and equals
zero if z = u. Thus, one can conclude that, in that limit, the domaiw z gives only a
contribution to the integral2.22) Decomposing the integrand near the point z and
going to the integration ovew = u — z, it can be seen that the Poisson braqi217)
provides the first order approximation to the star commutator for large quantum numbers
(smallR); that is:

Cw LG — LS L§ = i{L§, Ls}hp + O(1/cy), (2.24)

i.e. the quantities A, ~ h* (inverse Casimir eigenvalues) play the role of the Planck

constantii, and one uses thatsti= Qaﬂ " dzop dzey (Hermitian Riemannian metric on
Oc¢). We address the reader to Sect‘&)fmr more details.

Before goingtothe general SN(, N_) case, letus discuss the two well known examples
of SU(2) and SU(11).

3. Tensor operator algebras of SU(2) and SU(1, 1)

3.1. Tensor operator algebras of SU(2) and large-N matrix models

Let ?i(N), i =1,2, 3 bethreeV x N Hermitian matrices with commutation relations:
[T, 5] = inein I, (3.1)

that is, av-dimensional irreducible representation of the angular momentum algebra su(2).

The Casimir operato€, = (J(M)2 = h2N4 yyn is @ multiple of theN x N identity
matrix I. The factor algebr&Vy (su(2)) is generated by the SU(2)-tensor operators:

1 _ m N N
Tu(N) = Z Kl(l) lIJl(l ). !(1 )’ (3.2)
=123
k=1,...1
where the upper indek=1, ..., N — 1is the spin labeln = , I is the third com-

ponentand the complex coefﬂuenf?’) are the components of a symmetrlc andtraceless
tensor. According to BurnS|de’Eheorem 2.4the factor algebr&Vy (su(2)) is isomorphic
to su(V). Thus, the commutation relations:

[TENY, T (V] = fE (N TE (W) (3.3)

mnK

are those of the sif) Lie algebra, Whergf”’ (N) symbolize the structure constants which,
for the Racah—Wigner basis of tensor operaf@fd, can be written in terms of Clebsch—
Gordan and (generalized)-8ymbols[27,10,13]

The formal limitN — oo of the commutation relation(8.3) coincides with the Poisson
bracket

i oyl ay/ oyl oy’
{, " ”}P sin® (81;1 a; B 87; 81;) o ’;{‘IK(OO)YK (3.4)
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between spherical harmonics

Ynlz(ﬁ7 9) = Z Kzgf?.‘,ilxil crXips (3.5)
ip=1,2,3
k=1,...,1
which are defined in a similar way to tensor operaf@<), but replacing the angular
momentum operatorg(") by the coordinates = (cose sin®, sing sin®, cosy), i.e. its
covariant symbol§2.20) Indeed, the larg@¥ structure constants can be calculated through
the scalar product (s¢28]):

Jim fnk(N) = fnk(00) = (VY k)
_ / sind i dpTX (2, )(¥.. ¥/} p(0: ¢).
SZ

The set of Hamiltonian vector fieldd, = {Y,,"1 -}P close the algebra sdif§¢) of area-
preserving diffeomorphisms of the sphere, which can be identified witkosur the
(“weak convergence”) sense ¢23]—see EQ.(2.19) This fact was used if27] to
approximate the residual gauge symmetry s@fj(of the relativistic spherical mem-
brane by su¥)|y—~. There is an intriguing connection between this theory and the
guantum mechanics of space constant (“vacuum configurations”)VpW¥ang—Mills
potentials

N2-1
Au@)y= > AT, T.=T)(N), a=1...,N*-1 (3.6)
a=1

in the limit of “large number of colours” (larg®). Indeed, the low-energy limit of the
SU(e0) Yang—Mills action

S= /d4x(Fuv(x)|FMU(x)>7 Fuv = a;LAU - 8VAM + {Aua AV}Pv

Al 9, 9) =Y ALY, 9), (3.7)

Im

described by space-constant Sb)(vector potentialsX,,(t; 9, ¢) = A, (7, 0; 9, ®), turns
out to reproduce the dynamics of the relativistic spherical membran§@@peMoreover,
space—time constant St vector potentialsX,, (9, ¢) = A,(0; 9, ¢) lead to the Schild
action density for (null) stringR29]; the argument that the internal symmetry space of the
U(o0) pure Yang—Mills theory must be a functional space, actually the space of configu-
rations of a string, was pointed out in RE0]. Replacing the Sdiff{?)-gauge invariant
theory(3.7) by a SU(V)-gauge invariant theory with vector potenti§Bs6) then provides
a form of regularization.

We shall see later in Secti@hlhow actions for relativistic symplectjebranes (higher-
dimensional coadjoint orbits) can be defined for general (pseudo-)unitary groups in a similar
way.



M. Calixto / Journal of Geometry and Physics 56 (2006) 143—174 153
3.2. Tensor operator algebras of SU(1,1) and W(1.4)oo symmetry

As already stated in Sectidh WV algebras were first introduced as higher-conformal-
spin (s > 2) extensiongl] of the Virasoro algebras(= 2) through the operator product
expansion of the stress-energy tensor and primary fields in two-dimensional conformal
field theory. Only when alls{— oo) conformal spins are considered, the algebra (denoted
by W) is proven to be of Lie type.

Their classical limitw proves to have a space—time origin as (symplectic) diffeomorphism
algebras and Poisson algebras of functions on symplectic manifolds. For example,
is related to the algebra of area-preserving diffeomorphisms of the cylinder. Actually, let
us choose the next set of classical functions of the bosonic (harmonic oscillator) variables
a(a) = %(q +ip) = p et (we are using mass and frequemcy= 1 = w, for simplicity):

1
Ly = Y(aay a2 = 3?1 g2inl?,

L L = l(aa)l \n\—2\n| _ lpZI E_ZIIHW, (38)

wheren € Z; I € Z. A straightforward calculation from the basic Poisson bragket} =
i provides the following formal Poisson algebra:
dL,, L,  dL,, dL,
(Ll L)y =
9a da  da da

of functionsL on a two-dimensional phase space (83d). As a distinguished subalgebra
of (3.9) we have the set:

su(Ll)={Lo=L§=3aa, Ly =L} =1a% L_ =1L, = 1a?), (3.10)

) =i(In — Jm)LIH/~2, (3.9)

m+n

which provides an oscillator realization of the sul}) Lie algebra generatois., Lg, in
terms of a single bosonic variable, with commutation relati@$6) With this notation,
the functionsL!, in (3.8) can also be written as:

LY =27 Lo) ML L) (3.11)

This expression will be generalized for arbitrdfyN., N_) groups in Eq(4.1).
Following on the analysis of distinguished subalgebra@df), we have the “wedge”
subalgebra

wa = {LL, I —|m| >0} (3.12)

of polynomial functions of the sl(ZR) generatord.g, L, which can be formally extended
beyond the wedgé — |m| > 0 by considering functions on the punctured complex plane
with I > 0 and arbitraryn. To the last set belong the (conformal-spin-2) generatgrs:

L%, n € Z, which close the Virasoro algebra without central extension,

{Lm, Lp} =i(n — m)Lyn, (3.13)

and the (conformal-spin-1) generataigs = L?n, which close the non-extended Abelian
Kac—Moody algebra,

{¢m’ ¢n} =0. (3.14)
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In general, the higher-su(1)-spin fields L,’l have “conformal-spin”s =17+ 1 and
“conformal-dimension’: (the eigenvalue OL%).

w-Algebras have been used as the underlying gauge symmetry of two-dimensional grav-
ity models, and induced actions for these-fjravities” have been written (see for example
[3]). They turn out to be constrained Wess—Zumino—Witten md@&s as happens with
standard induced gravity. The quantization procedlgferms the classical algebra to
the quantum algebr# due to the presence of anomalies —deformations of Moyal type
of Poisson and symplectic-diffeomorphism algebras caused essentially by normal order
ambiguities (see below). Also, generalizing the SIKPKac—Moody hidden symmetry of
Polyakov’s induced gravity, there are Sb(R) and GLeo, R) Kac—Moody hidden sym-
metries forV, andWi o gravities, respectiveli33]. Moreover, as already mentioned,
the symmetryV1 o, appears to be useful in the classification of universality classes in the
fractional quantum Hall effect.

The group-theoretic structure underlying th#Balgebras was elucidated[i0], where
W andWi 1« appeared to be distinct members£ 0 andc = —1/4 cases, respectively)
of the one-parameter famil/»(c) of non-isomorphid11,12]infinite-dimensional factor
Lie-algebras of the SU(1L) tensor operators:

i‘li\m| X [I:;, [1:¢, ER [Z¢v(ii)1] ]l
I—|m|times

= (ad; ) T"(Ls)! ~ Lo ™ML + o), (3.15)

when extended beyond the wedge m > 0. The generators, = X12, L_ = X21, Lo =
(X22 — X11)/2, fulfil the standard su(1l) Lie-algebra commutation relations:

[Li, Lol =+hLly,  [Ly,L_]=2hLo, (3.16)

andC = (Lo)?> — 3(L+L_ +L_L,) is the Casimir operator of su(1). The structure
constants folV,(su(l 1)) can be written in terms of sl(R) Clebsch—Gordan coefficients
and generalized (Wigner)j6symbolg[10,13], and they have the general form:
o
(Lo Lile = Y W2 @l @0 + 10103 )8 Syam ol (3.17)
r=0
wherel ~ ig denotes a central generator and the central chagyés; ¢) provide for
the existence of central extensions. For examplgin; ¢) = 1£2(rz3 — n) reproduces the
typical central extension in the Virasoro secios 1, andQ;(n; ¢) supplies central charges
to all conformal-sping = I + 1. Quantum deformations of the polynomial or “wedge”
subalgebrg3.12)do not introduce true central extensions. The inclusion of central terms
in (3.17)requires the formal extension (8.12)beyond the wedgé — |m| > 0 (se€10]),
that is, the consideration of non-polynomial functig@sl1)on the Cartan generatdrp.

Central charges provide the essential ingredient required to construct invariant geometric
action functionals on coadjoint orbits of the corresponding groups. When applied to Vira-
soro andWV algebras, they lead to Wess—Zumino-Witten modelsd@iced conformal
gravities in 1+ 1 dimensions (see e.g. Ref[32]). Also, local and non-local versions of
the Toda systems emerge, as integrable dynamical systems, from a one-parameter family
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of (“quantum tori Lie”) subalgebras of gi) (se€[34]). Infinite-dimensional analogues of
rigid tops are discussed|[iB4] too; some of these systems give rise to “quantized” (magneto)
hydrodynamic equations of an ideal fluid on a torus.

The leading order (Q¥), r = 0) structure constant§!’ (0;¢) = Jm — In in (3.17)re-
produce the classical structure constantSif). It is also precisely for the specific values
of c=0andc = —% Weo and Wi, respectively) that the sequence of higher-order
terms on the right-hand side ¢3.17)turns out to be zero whenevér J — 2r < 2 and
I+ J — 2r < 1, respectively. TherefordVs, (resp.W1+~) can be consistently truncated
to a closed algebra containing only those generaicimNith positive conformal-spins
s=I1+1>2(resps=1+1>1).

The higher-order terms (@%), r > 1) can be captured in a classical construction by
extending the Poisson bracKgt9)to the Moyal bracket

(2P o
whereL x L' = exp(’%P) (L, L") is aninvariant associative x-product and

- , L oL
P(L’L)Eylljl...’),})'./r ’
0x;y -+ Oxy, Oxjy - - - Oxy,

(3.19)

01
with x = (a, a) andY = 10 .WesetP(L, L") = L - L', the ordinary (commutative)

product of functions. Indeed, Moyal brackets where identifi¢83has the primary quantum
deformationWV, of the classical algebra, of area-preserving diffeomorphisms of the
cylinder. Also, the oscillator realization {8.8)of the su(1 1) Lie-algebra generatofsy, Lo

in terms of a single bosonu(a) is related to the “symplecton” algebd&/s,(—3/16) of
Biedenharn and LoucJ26] and the higher-spin algebra hs(2) of Vasil[&®].

4. Extending the previous constructions to U(Ny, N_)
4.1. Generalized woo algebras

The generalization of previous constructions to arbitrary unitary groups proves to be
quite unwieldy, and a canonical classificationlofNV)-tensor operators has, so far, been
proven to exist only fol/(2) andU(3) (se€[26] and references therein). Tensor labelling
is provided in these cases by the Gel'fand—Weyl pattern for vectors in the carrier space of
unitary irreducible representationsG{N) (see later on Sectiob.2).

In the letter[16], a set ofU(N;+, N_)-tensor operators was put forward and the Lie-
algebra structure constants, for the particular case of the oscillator realig2#onwere
calculated through Moyal bracket (see later on Secli@ The chosen set of operators
L! in the universal enveloping algebi#u (N, N_)) was a natural generalization of the
su(l, 1)-tensor operators of EB.11) where nowLg is be replaced bl Cartan generators
Xewr@=1,...,N,andL, L_ are replaced by (N — 1)/2 “rising” generatorsX o5, « <
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g andN(N — 1)/2 “lowering” generatorsf(ag, a > B, respectively. The explicit form of
these operators is:

[ X Io— [magl+ |mgyl)/2 N
L{Hml = H(Xaa) (Z/S>a Tof ZBQX "p )/ H(Xaﬁ)|"mﬁ|v
o

a<p
~ ~ Iy— My, m By 2 v m
Llf\ml = H(Xaa) (2,3>(,| 5\+25<¢,| B |)/ H(Xﬂa)l apl (4.1)
a a<p
The upper (generalized spin) inddx= (I3, ..., Iy) of L in (4.1) represents now a

N-dimensional vector, which is taken to lie on a half-integral lattiges N/2; the
lower index (“third component”)n symbolizes now an integral upper-trianguldrx N
matrix,

0 my2 mz --- min
0O O mo3 ... moy
m= 0 0 O ... may , Mag €L, (4.2)
0

NxN

and |m| means absolute value of all its entries. Thus, the operzftf,)rslre labelled by
N + N(N —1)/2 = N(N + 1)/2 indices, in the same way as wave functiahs in the
carrier space of unirreps df(N) (see Sectiorb.2). We shall not restrict ourselves to
polynomial (“wedge”) subalgebras

WANG N =L Iy = (D Imapl+ ) Impal | /2€ N, (4.3)

B>« B<a

and we shall consider “extensions beyond the wedde3) [to use the same nomenclature
as the authors of RdfL0] in the context o#V algebras]; that is, we shall let the upper indices
I, take arbitrary half-integer valudg € N/2. This way, we are giving the possibility of
true central extensions to the Lie algef4ad).?
The manifest expression of the structure constafaisthe commutators

(L5 Li) =L, Ly = LiL;, = fuak LE (4.4)
of a pair of operator¢4.1) entails a cumbersome and awkward computation, because of
inherent ordering problems. However, the essence of the full “quantum” alge@)aan
be still captured in a classical construction by extending the Poisson-Lie bfacdk®iof a
pair of functionsL/,, L; on the commuting coordinates; to its deformed version, in the
sense of Ref36]. To perform calculations wit{2.12)is still rather complicated because of

2 This claim deserves more careful study. So far, it is just an extrapolation of what happ#hs Mrasoro and
Kac—Moody algebras, where Laurent (and not Taylor or polynomial) expansions provide couples of conjugated
variables (positive and negative modes).
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non-canonical brackets for the generating elemeptsA way out to this technical problem
is to make use of the classical analogue of the standard oscillator realizafica,aqag,
of the generators of(N,., N_), and replace the Poisson—Lie braci 2)by the standard
Poisson bracket

oLl aL? oLl aL,{> 45)

LI L7y =iaA ! !
s L) “’f‘(aaa dag  dag Oag

for the Heisenberg—\Weyl algebfa,, ag} = iA, g. Although it is clear that, in general,

both algebras are not isomorphic, we shall see that the difference entails just an ordering
problem. Moreover, the bracké4.5) has the advantage that simplifies calculations and
expressions greatly. Indeed, it is not difficult to compt®) which, after some algebraic
manipulations, gives:

(L1 LY =iAP(Iyng — Jumpg) LI =% (4.6)
where
my = Zm“ﬂ - Zmﬁa 4.7)
p>a B<a

defines the components ofAxdimensional integral vector linked to the integral upper-
triangular matrixn in (4.2), and

Sy =(8%,...,8Y (4.8)

is aN-dimensional vector with theth entry equal to one and zero elsewhere. There is a
clear resemblance between thg algebrg3.9) and (4.6)although the last one is far richer,
as we shall show in Sectioh2 We shall refer td4.6) aswo(N+, N_), or “generalized
weo, algebra.

Let us see more carefully what we miss by replacing the Poisson—Lie bfack2jwith
the standard Poisson bracKét5). First we note that the change of variablg = aqag

n
oL oL’ oL oL’
Aozﬂ - = — =
day dag  dag day

Ao (axalﬂl 0L 0xg,p, oL’ _ 0Xq1; 0L 0xgyp, oL’ )
o < =
0ay Oxgqp, 0ag 0Xayp, dag Oxg p, 00y 0Xayp,

_ oL oL’ oL _ oL’
= A 8 88 —ag, 8P 8
“f (aal A X1 1 ol 0Xgp 8, 1% 0%xg1 81 o2z 0Xqp 8
oL oL’

(AaprXarpy — AarpoXasps) (4.9)

0Xq1 81 0Xarppy ’

is not one-to-one, as we haw (real) coordinates,g and 2V (real) coordinates,, ag.
Also, the Poisson algeb(4.5)does not distinguish between polynomials likgg, x«,, and
Xa B Xanpy, Which admit the same form when written in terms of the commuting oscillator
variablesi,, ag asxqps = aqag. Thatis, non-zero combinations likg, g, Xa,, — Xay g2 Xazp;
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behave as zero under Poisson brackéiS). More precisely, we can see that “null-type”
polynomials like:

XagBraofz = XarprXazfa — Xa1faXarfy (4.10)

generate ideals of the algebf&°(G*) of smooth functiond. on the coalgebrg*. Indeed,
it suffices to realize that the Poisson—Lie bracket between a generic mongmihd a
null-type polynomiaf4.10)gives a combination of null-type polynomials, that is:

{Xap, Xar praapo }PL = 1 Aay pXaprasps — 1 AapsXarpasps + 1 AazpXarpraps
— 1 AayXarprazps (4.11)

and similarly for general null-type polynomials of higher degree. Thus, we can say that the
standard Poisson algel{ra5) and (4.6)s a subalgebra of the quotiefit®(G*) /Z of C*°(G*)
[with Poisson—Lie brackd®.12] by the idealZ generated by null-type polynomials.

This quotient captures the essence of the full algebra and will be enough for our pur-
poses [we shall give in Sectidthe main guidelines to deal with the general case (general
representations)]. Nevertheless, we should not forget that ordering problems like this are typ-
ically the origin of important central extensions an@malies in quantum theory. Namely:
Schwinger terms that appear in quantum current algebras, when currents are written in terms
of fermionic matter operators; or central charges likeln) = 12(n — n) for the Virasoro
sector in(3.17) when the diff61) generatord., are written in terms of primary fields of
WZW models, according to the Sugawara construction; or even the zero-point energy of
the quantum harmonic oscillator, with important physical consequences like the Casimir
effect, etc.

Before discussing quantum (Moyal) deformationg4b), let us recognize some of its
relevant subalgebras.

4.2. Distinguished subalgebras of Woo(N+, N-)

There are many possible ways of embeddingdt?, , N_) generator§2.6)inside(4.6),
as there are also many possible choices of slj(inside(3.9). However, a “canonical”
choice is:

max,B)—1
Xop = —iLY,,  ep=SONB—a) > enoit, (4.12)

o=min(e, B)

wheres, is defined in4.8)ande, »+1 denotes an upper-triangular matrix with thed + 1)-
entry equal to one and zero elsewhere, thatjs(1) ., = 66, .80+1,0 (We S€ley, = 0). For
example, the:(1, 1) Lie-algebra generators correspond to:

X1p = —inr L9 Xo1 = —inr @Y ,
12 21 0-1
00

(05)
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1.0

- : - (0.1
X11 = —IhL , Xo2 = —IhL . 4.13
11 00 22 00 (4.13)
00 00

Letting the lower-index: = eqg in (4.12)run over arbitrary integral upper-triangular ma-
tricesm, we arrive to the following infinite-dimensional algebra (as can be seen(f#d)):

8 . 8
(LY, Ly = —i(mPL, —nLE ), (4.14)

which we shall denote b_wg)(NJr, N_). Referencgl13] also considered infinite continua-
tions of the particular finite-dimensional symmetries SQ{land SO(32), as an “analytic
continuation”, i.e. an extension (or “revocation”, to use their own expression) of the region
of definition of the Lie-algebra generators’ labels. It is easy to see that(fof), the “an

alytic continuation’(4.14)leads to two Virasoro sectorg;,,, = L&9), L,,, = LOD its
3+ 1) dimensional counterpaﬂélo)(z, 2) contains four non-commuting Virasoro-like sec-
torSw (2 2) = {L%},a = 1,...,4which, in their turn, hold three genuine Virasoro sec-
torsform = kueg, k € Z,ao < p=2,...,4, Wheremﬂ denotes an upper-triangular matrix
with componentsyg) v = e, 1188,v- IN generalw (N+, N_) containsN(N — 1) distinct
and non-commuting Virasoro sectors,

{V(aﬂ) V(O‘ﬂ)} IA“‘)‘Slgn(B _ a)(k ) (0‘/3) V(a'B) Llsoz

K+ > Kitgp? (4.15)

and holds«(N, N ) as themaximal finite-dimensional subalgebra.

The algebrau (N+, N_) can be seen as thgnimal infinite continuation of«(N, N_)
representing the diffeomorphism algebra difj(of the N-torustU (1)". Indeed, the algebra
(4.14) formally coincides with the algebra of vector fielﬂé;(y) = f(y)%, wherey =
(y1, ..., yny) denotes a local system of coordinates dif¢l) can be expanded in a plane
wave basis, such thdt’ = @y 9 m constitutes a basis of vector fields for the so-called
generalized Witt algebr@7],

(L%, LE] = —i(mPLY . —n®LE

i), (4.16)

of which there are studies about its representations (se¢38]y. Note that, for us, the
N-dimensional lattice vectof = (my, ..., my)in (4.7)is, by construction, constrained to
fo\’:l my = 0 (i.e. L,‘; is divergence free), which introduces some novelties (4.14) as
regards the Witt algebr@.16) Actually, the algebrd4.14)can be split into one “tempo-
ral” piece, constituted by an Abelian ideal generatedilﬁs/z Age L%, and a “residual”
symmetry generated by the spatial diffeomorphisms

Li = AyLy — Ajyrjsalo™, j=1,...,N —1 (nosum o). (4.17)

which act semi-directly on the temporal part. More precisely, the commutation relations
(4.14)in this new basis adopt the following form:

(L, LX)y = —i(m* L), — /LK), (LI, LMY =i/l

(LN, LNy =0, (4.18)



160 M. Calixto / Journal of Geometry and Physics 56 (2006) 143174

wherenty = my — mi41. Only for N = 2, the last commutator admits a central extension
of the form~ n128,,4+,.0 compatible with the rest of commutation relatiof@s18) This
result amounts to the fact that the (unconstrained) diffeomorphism algebus difbes not
admit any non-trivial central extension except whénr= 1 (se€39]).

Another important point is in order here. The expresgibh2)reveals an embedding of
the Lie algebrau(N,, N_) inside the diffeomorphism algebra dif(, N_) with commu-
tation relationg4.14) That is, this new way of labelling(N,., N_) generators provides an
straightforward “analytic continuation” from(N., N_) to diff(N4, N_).

As well as the U(N4, N_)-spinl = §, currents” (diffeomorphismsl)ﬁ;‘ in (4.14) one
can also introduce “higheli{ N+, N_)-spinI currents”L (in a sense similar to that of Ref.
[14]) by letting the upper-indekrun over an arbitrary half-integral-dimensional lattice.

Diffeomorphismst,’,‘ act semi-directly onz(N,., N_)-spinJ currents”L; as follows (see
Eqg.(4.6)):

8u J+8,—8a

(Lo, L)Y = =A% Jymg Ly, 0 +in L], (4.19)
Note that this action leaves stable Casimir quantum numbers like th&GfceJ, [Casimir

Cj eigenvalué2.7). This higher-spin structure of the algelwa, (N, N_) will be justified

and highlighted in SectioB, where higher-spin representations of pseudo-unitary groups
will be explicitly calculated.

4.3. Quantum (Moyal) deformations

As it happens withw,-algebras, the quantization procedure, which entails unavoidable
renormalizations (mainly due to ordering problems), must deform the clasaieal @)
“generalizedw,” algebraw.. (N4, N_) in (4.6)to a quantum algebr&/s (N4, N_), by
adding higher-order (Moyal-type) terms and central extensions likg.ih7) There is
basically only one possible deformati#¥,, (N, N_) of the bracke{4.5)— corresponding
to a full symmetrization — that fulfils the Jacobi identities (see B#&f), which is the Moyal
bracket(3.18,3.19) where now

(%)

is a 2V x 2N symplectic matrix. The calculation of higher-order termg3nl8) is an
arduous task, but the result can be summed up as follows:

2r+1 _ZZI+1
l 0(
L L = Zz( ) FoEe (L m; . WL L L, (4.20)

where the higher-order structure constants

2r+1 (_l)g 2r+1
- sBs Tt 4
forseri(lm; J,n) = Z m [T AP ri (. —m)rg (hn)  (4.21)
s=1
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are expressed in terms of the factors
rtm) =18 + (1, /2, (4.22)

which are defined through the vectdds7)andU (N, N_)-spins

s—1
1 =1,- > & 19=/D=y (4.23)
1=0(s——1)¢+1
with
o —5) 0ife <, (4.24)
YT\ 1ife s, '

the Heaviside function. For example, foe 0, the leading order (classicél— 0) structure
constants are:

fedm; Jon) = AM(LUL =m)TR(J, n) = Ty(1, —m)T(J, n))

= A ((Iy — ma/2)(Jp + np/2) — (I + ma/2)(Jg — np/2)),
(4.25)

which, after simplification, coincides witt#.6).
We have rephrased our previous (hard) problem of computing the commuiéitys
of the tensor operatorg.1) in terms of (more easy) Moyal brackets of functions on the
coalgebra(N,, N_)* [up to quotients by the idealsgenerated by “null-type” polynomials
like (4.10). Nevertheless, Moyal bracket captures the essence of more general deformations,
which may include central extensions like
[LL L] = A% (Jymp — Iung)LL"1 % 1 On3)

m+n
N
+ h(zuzl latJa) Q,(m)SI’JSm.,_n,oH, (4.26)

with central charge® (m) forall U(N4., N-)-spin/ cgrrentsiﬁl. Note that, the structure of

this central extension implies that the modgsandLZ’ ,, are conjugated, a fact inherited
from the conjugation relatioo?lﬂ = Xy, after (2.5) and the definitior(4.1) of L! . An
exhaustive study of this central extensions is in progress. Note that the diffeomorphism
subalgebraugﬁ)(NJr, N_) remains unaltered by Moyal deformations.

5. Towards a geometrical interpretation of W, (N4, N_)

In this section we want to highlight the higher-spin structurdgf (N, N_). To jus-
tify this view, we shall develop the representation theory/6N,., N_) (discrete series),
calculating higher-spin representations, coherent states and derigingristructures on
flag manifolds, which are essential ingredients to define operator symbols.
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5.1. Complex coordinates on flag manifolds

Although we shall restrict ourselves to the compact 8)ase in the following general
discussion, most of the results are easily extrapolated to the non-compaét SN() case.
Actually, we shall exemplify our construction with the{31)-dimensional conformal group
SU(2 2) = SO(4 2).

In order to put coordinates ai = SU(N), the ideal choice is the Bruhat decomposition
[40] for the coset space (flag manifolfl)= G/T, where we denotd = U(1)V~! the
maximal torus. We shall introduce a local complex parametrizatidh lmf means of the
isomorphismG/T = G/ B, whereG® = SL(N, C) is the complexification of;, andB is
the Borel subgroup of upper triangular matrices. In one direction, the elegiert[G/ T
is mapped tof] 3 € GC/B. For example, folG = SU(4) we have:

Uy up U3 U4 71 Z2 3 24
U1l U1z U13 U4 1 0 0 O
U1 U2 U3 U4 72121 0 O
[glr = — [glB = 1 0 , (6.1)
U3l U3 U3z U34 731 232
U4l W42 U43 U4 741 z42 z43 1
where
uz1 uz1 U4
21 = —, Z3l= R 41 = —,
u11 u11 u11
U11U32 — U12U3] U142 — U12U41
Pp= —, 4y = ——————,
U11U22 — U12U21 U11U22 — U12U2]
w4 = ura(uz1ua — uzauar) — uzs(uriuaz — uizuar) + uag(uiuz2 — uizu21)
u13(u21u32 — uoou3z1) — u23(u11432 — u12u31) + u3z(U11U22 — U12U21)
(5.2)

provides a complex coordinatizatioft.s, o > g =1,2,3} of nearly all of the six-
dimensional flag manifolfis = SU(4)/ U(1)3, missing only a lower-dimensional subspace;
indeed, these coordinates are defined where the denominators are non-zero. In general, each
flag Fy—1 is covered byN! patches, related to the elements of the Weyl grougothe
symmetric groupSy of N elements. A complete atlas of coordinate charts is obtained by
moving this coordinate patch around by means of left multiplication with the Weyl group
representatives (see e[42]). We shall restrict ourselves to the largest Bruhat (ell).

In the other direction, i.e. fronGC/B to G/T, one uses the Iwasawa decompo-
sition: any elemeng® € GC© may be factorized ag® = gb, g € G,b € B in a unique
fashion, up to torus elementse T (the Cartan subgroup of diagonal matrices
diag(y. r2/11, 13/12, . . ., 1/tny—_1)), which coordinates, can be calculated as the arguments
te = (Aa(g)/ Ax(g))Y? of the a-upper principal minorsA, of g € G. For example, for
SU(4) we have:

1/2 12
. (Mll) " <M11u22 - M12u21>
1= — s = = .
u11 U11U22 — U12U21
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12
. (uls(uzlusz — uou31) — u23(u11uzz — u12u3z1) + uzz(uiiugr — u12u21)) /

u13(u21u32 — upou31) — u23(u11u3p — u1ou31) + u3z(u11U22 — U12u21)
(5.3)

The lwasawa decomposition in this case may be proved by means of the Gram—-Schmidt
ortonormalization process: regard agfy= [g] 3 € GC [like the one in(5.1)] as a juxtapo-

sition of N column vectors4s, zo2, ..., zn). Then one obtains orthogonal vectdig} in
the usual way:
V= 2 — (Zou vozfl) Y L (Zou Ul)v/ - U:x
RN AR e Whv) ) (A, )2

(5.4)

(not sum onw) where ¢y, vg) = zq, A*'vg, denotes a scalar product with metidc At

this point, it should be noted that the previous procedure can be straightforwardly extended
to the non-compact case = SU(N,, N_) just by considering the indefinite metrit =

diag(1 ...N+, 1, —1,...N-, —1). Using a relativistic notation, we may say that the vectors
v1, ..., vy, are “space-like” [thatisu,, vg) = 1] whereasiy, 11, ..., vy are “time-like”

li.e, (va, vg) = —1J; this ensures thatAv’ = A. For example, for SU(2), the explicit
expression of5.4) proves to be:

1
221
v1 = |A1] ,
z31
241
—221 + 232231 + 242241
1+ 232221231 — 231231 + 242221241 — 241241
v2 = |A1]|A2] _ _ _ ,
232 + 232221221 — 221231 + 242231241 — 232241241
242 + 242221221 — 242731231 — 221241 + 232231241
[ — 232221 — 242243221 + 231 — 242242231 + 232242243231
+232242741 + 743241 — 232232243241)
[232 + 242243 — 242242221231 + 232242743221231 — 242743231231 + 242231241
\Agll 43l +232242221241 — 232232243221241 + 232243231241 — 232241241
v3 = |Az||A3 _ _ _ _ _ L ,
[1 — za2za2 + 232742243 — 242742221221 + 232742243221221 — 242243221231
+242221241 + 242221241 — 232243221241 + 243731241 — 241241]
(232242 + 243 — 232232243 + 232242221221 — 232232243221221 + 232243721231
—242221231 + 232243721231 — 243731231 — 232221241 + 231241]
—Z242721 + 232743221 — 243231 + 241
242 — 232243
vg = |Ag| _ , (5.5
—Za3

1



164 M. Calixto / Journal of Geometry and Physics 56 (2006) 143174

where
1

|A1(Z, Z)| = > 2 2’

V1 lz212 = Jza12 — [zaal

1

|42(z, 2)| = ,

\/l + 1232241 — 24223112 — |232|% — |242/* — |232221 — 2311 — 242221 — za1|?

1

[43(z, 2)| = (5.6)

\/1 + 12431% — |242 — 24323212 — 1241 + 243232221 — 242221 — Z43%31/?

are the moduli of ther = 1, 2, 3 upper principal minorg\,(g) of ¢ € G. These “charac-
teristic lengths” will play a central role in what follows.

Any (peudo-) unitary matrixg € G in the present patch (which contains the identity
elementz = 0 =z, ¢+ = 1) can be written in minimal coordinat@s= (zag, zup, 18). & >

B=1...,N—1, as the producg = vt of an elementv of the base (flagF times an
element of the fibreT = U(1)V 1.

Once we have the expression of a genérgtoup elemeng = (g2, ..., gNZ*l) interms
of the minimal coordinateg = (zug, zag, 18). @ > B =1,..., N — 1, we can easily write
the group lang” = ¢’ e g and compute the left- and right-invariant vector fields

9 (g e g
Lioy — rk k(oy
X5 (&) = ﬁj(g)agﬁ, Cj(g) = T
g'=e
d g e g)
R(,) — Pk k(oy _
Xi(g) = Rj(g)agﬁ, Ri(g) = g
g'=e
j k=1 ...,N>—1=dim(G). (5.7)

The algebraic correspondence between right-invariant vector fields and the step operators
(2.2), with commutation relation.5), is:

ngﬂ — 5((1/3, XZBaﬂ — 5(/301, X;Z — )A(ﬁﬁ — 5(/3_;_1’/3_;_1,
a>B=1...,N—1 (5.8)

5.2. Higher-spin representations, coherent states and Kdhler structures on flag
manifolds

In this section we shall compute the unitary irreducible representatiotsasfd we
shall construct coherent states and geometric structures attached to them. Let us start by
considering the (finite) left regular representatidn¥1(g") = (g1 e g) of the group
G on complex functionsl on G [remember Eq(2.8). This representation is highly
reducible. The reduction can be achieved through a complete set of finite right restrictions
or “polarization equations” (in the language of geometric quantiz§i8y):

[R,¥](g) =¥(g' o) = D°(g)¥(g') Vge PVg G, (5.9)

which impose tha must transform according to a given (Abelian) representafién
(with index ¢) of a certain maximal proper subgroupc G (“polarization subgroup”).
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The Lie algebraP of P is called a “first-order polarization”, which formal definition could
be stated as in the following definition.

Definition 5.1. A first-order polarization is a proper subalgefgtaf the Lie algebr& of G,
realized in terms of left-invariant vector fiel® [the infinitesimal generators of finite right
translationg5.9)]. It must satisfy a maximality condition in order to define an irreducible
representation afs.

Hence, at the Lie algebra level, the polarization equat{ér®) acquire the form of a
system of non-homogeneous first-order partial differential equafions:

xhw =cjw(g) vxheP, (5.10)

wherec denotes a one-dimensional representation (character) of the polarization subalgebra
P, c(XF) = ¢; VXt € P. That is,c is the infinitesimal character associatedxoin (5.9).

Notice that since the representation is one-dimensional, the charaetmishes on the
derived subalgebreF], P] of P, i.e. c([X}, X%]) = OVX[, X% € P. This means that it
factorizes via the Abelian quotief®/[P, P]. Hence the value of on P is determined by

the value of the factorizedon the Abelian quotient. For our case, the first-order polarization
subalgebr&@ will be generated by the following — 1 + N(N — 1)/2) left-invariant vector

fields:

P= (X,Lﬁ,Xfaﬁ,a >p=1...,N-1.
Then, the quotientP/[P, P] coincides here with the Abelian Cartan subalgefjre

u(1)N-1. Therefore, denoting bay(XtLﬁ) = —28g VXtLﬁ € Tthe non-zero characters o~
spin labels”, the solution to the polarization equati@4.0)

Kl =220 s ) = we(0)e@ (5.11)
XL w=0, ’

can be arranged as the product of a highest-weight vagiof“vacuum”), which is a
particular solution o’rXtLﬁlI/ = —2S5g¥ and can be written as a product of upper principal
minors
N-1
Ws(g) = [ (As(e)?*, (5.12)
p=1
times an anti-holomorphic functiof(z), which can be written as an analytic power series,
with complex coefficientas,, on its arguments,g,

o@) =Y ap [ [ Gap)". (5.13)

a>p

3 This procedure for obtaining irreducible representations resembles Mackey’s induction method, except for the
fact that it can be extended to “higher-order polarizations”: subalggb¥&sof the (left) universal enveloping
algebral(G) which also satisfy a maximality condition in order to define an irreducible representation (see e.g.
[41] for more details).
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The indexm denotes an integral upper-triangufdr< N matrix [see(4.2)]. The range of
the entriesnyg, @ < B =2,..., N depends on the set Gf-spin indices{Sﬁ}g;f, which

label particularG-spin S irreducible representations 6f on the Hilbert spacé{s(G) of

polarized wave function.11)

The sign of the SU{, N_)-spin indicesSg depends on the (non-)compact character
of the corresponding simple roots: the ones whose gener&tgraulfil § = o 4 1. With
this notation, all the rootsx3) are of compact type except far) = (N4, N+ + 1). This
fact implies thatSg € Z* /2 except forSy, € Z~/2. Indeed, with this choice of sign we
guarantee: (a) thgniteness of the scalar produdi®|¥) = |, dl g ®(g)¥(g), which Haar
measure has the form:

N-1 N-1
dbg = [ 145G 1" A\ 15 dts N\ dzap A dzap (5.14)
=1 p=1 a>f

[where we have used that d&f{(g)) ™ = [[}_1' | 44(z. 2)I*; ] and (b) theunitariry of the

representationf, ¥](g) = lI/(g/‘l e g) of G. We can still keep track of the extt& 1) quan-
tum numberSy that differentiated/(N) ~ (SUWN) x U(1))/Zy from SUN) representa-
tions. TheU(N) wave functions¥! depend on an extréi(1)-factor ¢y) =25V, ry € U(1)
in the vacuum wave functios in (5.13) where the relation between tH&N)-spin
labelsI = (I3, ..., Iy) of Eq. (4.1) and the SUK) x U(1)-spin labelsS = (S1, ..., Sn)
is:Sg=1Ig—Igt1,86=1...,N—1andSy = fo\’:l I, [the CasimirC; (trace) eigen-
value].

The basic wave functiong> (g) = Ws(g) [ o= p(zap)™? of Hs(G) are eigenfunctions
of the right-invariant differential operatoﬂé{f3 (Cartan generators):

XRwS = (2S5 4+ mp — mp )W, (5.15)

g m

wheremg is defined in(4.7); notice that the eigenvalue§2 + mg — mg41) of X,’; canalso

be written as 29(S, m) — I'g, 1(S, m)), wherel (S, m) is one of the characteristic factors
(4.22)that appears in the power expansion of the structure congtagis) of the algebra
(4.20) The lowering operatorg&,s = ngﬁ annihilate the vacuum vectdrg = Ws. The
rest of vectord.? (g) of the Hilbert spacé{s(G) can be obtained through the orbit of the
vacuum under the action of rising operatmg% = XZ[,Zﬂ:

L3 (9) = [[ (@) = ws().  map € N. (5.16)

a>f

Notice that the way of labelling the enveloping algebra opergtbrs) and base vectors
L5 in the carrier space{s(G) of irreducible representations 6fcoincides: the uppeg-
spin indexS is an integral vector and the lower index (“third component’s an integral
upper-triangular matrix). Negative modéélm‘ in (4.1)would correspond to the complex

conjugate (holomorphic) vectols’ ,, = an. We shall give later on Eq5.22)the explicit

expression of the orbifp = {L,¥{, g € G} of the vacuum vectowy = Ws under the
finite left action of the groujw.



M. Calixto / Journal of Geometry and Physics 56 (2006) 143—174 167

Denote(Sg|¥) = ¥5(g) and(¥|Sg) = lI_/S(g). The coherent state overlap or “reproduc-
ing kernel’ Ag(g, g') = (Sg | Sg/> can be calculated by inserting the resolution of unity

1= 1xm) (Xml (5.17)

given by an orthonormal basisy,,)} of Hs(G). The explicit expression of this overlap in
terms of upper-minorg\g, 8 =1,..., N — 1, of g = (1, z, 2) € G turns out to be:

_ N (gl Ap(z, D58 (151 Ap(2, 2)1)>
S N S A B
A%(g.8) = Em m(&)xm(8) = 51;[1 2, 9

This reproducing kernel satisfies the integral equation of a projector operator

(5.18)

5.8 = [ 4% )45 ). (5.19)
and the propagator equation:

W30 = [ dh 4% ) (5.20)
where we have used the resolution of unity

1- /G d'g |Sg) (Sgl. (5.21)

Given a vectoty € Hg(G) (for example the vacuurVs(g) = (Sg|0)) the set of vectors in
the orbit ofy underG, F, = {y, = L,y, g € G}, is called a family of covariant CS. We
know from(5.15)that the Cartanifotropy) subgroupl’ = U(1)V 1 stabilizes the vacuum

vectory = Ws up to multiplicative phase factor%sﬁ (characters df). Actually, the explicit
expression of the family, of CS fory = Wy turns out to be:

N-1
_ @7 28
[LeWsl(g) = Ws(g e g') = Ws(g) e 9 [ 5%, (5.22)
p=1

where we define

|Ap(z, 2)|

145G )P (523)

N-1
Os(@. g) =~ 25In
B=1

an anti-holomorphic function of Tulfilling cocycle properties (see below) and related to
the so-called “multipliers” (Radon—Nikodym derivative) in standard representation theory.
Considering the flag manifold® = G/T and taking the Borel sectiow : F —
G,0(z,2) = (z,z,t = 1) = g (which appears implicitly in the factorizatiop = vt) we
may define another family of covariant CSja$; ;) = Ls(;,7)v (classes of CS modulb),
which are usually referred to as the Gilmore—Perelomov CS.
Itis also known in the literature that the flag manifélis a Kahler manifold, with local
complex coordinates,g, zqs (5.2), an Hermitian Riemannian metricand a corresponding
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closed two-form (Kahler form)s2,
ds? — By dzap 0200, Q = in?hw dzep A 02500, (5.24)

which can be obtained from theaKler potential

N-1
Ks(z.2)=— ) _4SgIn|Ap(z. 2)| (5.25)
p=1

through the formulay®®#v = %%Kg Notice that the Khler potentialKs essen-

tially corresponds to the natural logarithm of the squared vacuum modiy(s z) =
—1In|Ws(z, z, 1)|% in (5.13) Actually, given the holomorphic action &f onF,

(.7)— g, ) =0"Ygte(d,7.1), g€G, (.7)€F,

the transformation properties &fg are inherited from those d¥s in (5.22)
Ks(gz, 82) = Ks(z, 2) + Os(z. ) + Os(z. 8)- (5.26)

The function ®©g verifies the cocycle conditio®s(z, g’ e g) = Os(gz, &) + Os(z, g),
which results from the group properg¥(gz) = (g’ o g)z.

5.3. Operator symbols on flag manifolds

Let us consider the finite left translatioh § ¥5](g) = ¥5(¢'~1 » g) as alinear operator
in Hs(G). The symbol [remember the definiti¢.23) Lg,(g, h), g, ¢, h € G of the op-
eratorL y representing the group elemegite G in H5(G) can be written in terms of the
reproducing kerngl5.18)as:

LY(g. h) = (Sg|Ly|Sh) = A%(g'" g, h). (5.27)

Knowing that right-invariant vector field&® [defined in(5.7)] are the infinitesimal gen-
erators of finite left translations,, one can easily compute the symbdl%(g, h) of the

Lie-algebrag generator§(,~ as:
A d
X5(g. h) = (Sg1X;|Sh) = XK()A5(g. h) = Rﬁ(g)@AS(g, h). (5.28)

From a quantum-mechanical perspective, the pognésG do not label distinct states

lg) = L,4|0) because of the inherent phase freedom in quantum mechanics. Rather, the
corresponding quantum state depends on its equivalence glags{ g7 moduloT. Let us
consider then the new action@fon the anti-holomorphic padt(z) of ¥5(g) in (5.11) Since

the vacuumWs is a fixed common factor of all the wave functiows = W@ in (5.11)

we can factor it out and consider the restricted actign= Wy 1L, Ws on the arbitrary
anti-holomorphic part(z), thus resulting in:

(L)) = e *Cho(1T), g=(7)eC (5.29)
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(moduloT). The infinitesimal generatovsf of this new restricted action can be written as:

X5 = v, - 650, (5.30)
where
0 _
Vj = Xf(g)(gz)otmg:ea: 95(2) = Xf(g)@S(Zv g)|g=e-
107

Denoting nowz|®) = &(2), (®|7) = &(2) andL$(z, z') = (zIL;Z), the restriction of the
symbols(5.28)to the flag manifoldF can be written in terms of thedbler potentialk g
and the cocycl®y as follows:

X3z 7) = XKL I)lg=e = V;Ks(z. 2) — 05 2). (5.31)

The diagonal park JS (z, z) are calledequivariant momentum maps. Using Lie equations

for V; and differential properties of the Cocycﬂé, one can prove that momentum maps
implement a realization of the Lie algeh¥aof G in terms of Poisson bracke{®.17)

The correspondence between commutéds)and Poisson bracké2.17)does not hold
in general for arbitrary elements liké.1) in the universal enveloping algelig). As we
stated in Eq(2.24) the star commutator of symbols admits a power series expansion in the
G-spin parameterSg (being the Poisson bracket the leading term), so that star commutators
converge to Poisson brackets for large quantum numbessco.

We believe that higher-order terms in the Moyal commutafér0) give a “taste” of
these higher order corrections to the Poisson bracket in the star comm@a&4y of
symbols, which actual expression seems hard to compute.

6. Field models on flag manifolds

Before finishing, we would like to propose some interesting applications like diffeomor-
phism invariant field models, based on Yang—Mills theories, and non-linear sigma models
on flag manifolds.

6.1. Volume-preserving diffeomorphisms and higher-extended objects

We showed in Sectio.1 that the low-energy limit of the SWd) Yang—Mills ac-
tion (3.7), described by space-constant (vacuum configurationsjxgwector potentials
Xu(7; 9, 0) = Au(r, 059, @), turns out to reproduce the dynamics of the relativistic spherical
membrand; = $2. This view can be straightforwardly extended to arbitrary flag manifolds
Fy_1 = SUW)/U(1)V 1 just replacing the Poisson bracket on the spli@) by (2.17)
Actually, as it is done for sdiff{?) gauge invariant Yang—Mills theories {B.7), an action
functional for a sdiffffy_1) gauge invariant Yang—Mills theory in four dimensions could
be written as:

Sz/d4x<Fvy|Fvy>’ Fuy ZaUAy_ayAu+{AVa Ay}P’
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Axz) =Y ALWLy @2, vy=1...4 (6.1)
{S,m}

where now(-|-) denotes the scalar product between tensor operator symﬁoitm Fy_1,
with integration measuré2.18) which explicit expression is straightforwardly obtained
from the left-invariant Haar measuf®.14)on the whole grougs after inner derivatioriy

by left-invariant generators of toral (Cart@helements:

N-1 N-1
du(e. ) = [ ixe d°s = [] 146G DI* /\ dzap A dzap.
p=1 ' B=1 asp

Hence, all (infinite) higheG-spinsS vector fieldsA7(x) on R* are combined into a single
field A, (x; z, 7) on the extended manifol* x Fy_1; that is,A”(x) can be considered as
a particular “vibration mode of th& (N — 1)-braneFy_1.

Inthe same way, a2 1-dimensional Chern—Simons sdiff¢_1)-invariant gauge theory
can be formulated with action:

1
S=/ (AndA+ Z{A, A} A A), A=A, dx", (6.2)
R3xFy_1 3
and equations of motiorf’ = 0.

6.2. Nonlinear sigma models on flag manifolds

Let us consider a matrix € SU(N)/T (as a gauge group, i.e. as a mapR? —
SU(N)), which is a juxtapositiornv = (v1, ..., vy) of the N orthonormal vectors, in
(5.4). The Maurer—Cartan form can be decomposed in diagonal and off-diagonal parts

-
U1 N

vidv=oldv=| : | (dvy, -+, doy) = Z v, dvg X oo + Z v, dvpXog,
— a=1 a#fB
Uy

(6.3)

wheref(a,g are the step operato(2.4). The Lagrangian density for the non-linear sigma
model (SM) on the coset (flagy/ T

Lsy = gtrG/T(v_laﬂvv_lf)Mv) (6.4)
is written in terms of the off-diagonal parts as

K
Lsm = > %(va, d,vp). (6.5)
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The usual Lagrangian for the complex projective spaé@’—1 = SUW)/(SUN — 1) x
U(1))

o

ob
Lopy-1= ;"“5(“")2312@" Nap(#) = Sap — Gap ¢ -9 =1 (6.6)
can be also obtained as a particular casé6d) as follows. Unitary matrices on the
cosetC PV~1 are obtained fromg] 3 in (5.1) by considering the particular local complex
parametrization whergg = OVS > 2. Letus consider anew bag$iE, k =1,..., N2 — 1}
oftraceless Hermitian matrices for the Lie algebragyormalized as tt{* J') = %(Skl- Let
us usg0) for the Dirac notation for the vacuum vectdis(g) = (Sg|0). In the fundamental
representation (lowess), and for theC PV~ case, the vacuum is given by the column

N-vector

If we define by
¢" = OlwI*w'|0) = (wr w1

the vacuum expectation value of the conjugated Lie algebra eleméht! under the
adjoint action of the grouf, then the restriction

N
K
C(CPN—l = 5 /;z(wl» 3uwﬁ)2

of (6.5)to CPN~1 could also be written as

K

—duq - g,

‘C(CPN_l - 2

which coincides witi{6.6)when we identifyp, = wq1 = z41|A1(z, 2)|, z21 = 1. In partic-
ular, with this change of variable, one can see that the mejgan (6.6) coincides with
n*LALin (5.24)for the restrictionK s, (z, z7) = —451In |A1(z, 7)| of the Kahler potential to
cph-L,

7. Conclusions and outlook

We provided a general view of, what we agreed to call, “generali¥ggdsymmetries”,
from various perspectives and approaches. We started discussing the structure of these new
infinite-dimensionaW-like Lie algebras inside a group theoretical framework as algebras
of U(N4, N_) tensor operators. Inside this context, the (hard) problem of computing com-
mutators of tensor operators has been rephrased in terms of (more easy) Moyal brackets of
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(polynomial) functions on the coalgebwéN,, N_)*, up to quotients by the ideals gener-

ated by null-type polynomials liké4.10) That is, we have intended to recover quantum
commutators from quantum (Moyal) deformations of classical (oscillator) brackets. Moyal
bracket captures the essence of the full (quantum) algebra, and makes use of the standard
oscillator realization of the basiq N, N_)-Lie algebra generators. The resulting infinite-
dimensional generalize-algebras can be seen as:

1. infinite continuations of the finite-dimensional symmetrié§,, N_), or as
2. highery(N,, N_)-spin extensions of the diffeomorphism algebra a¥f( N_) of a
N-dimensional manifold (e.g. &-torus).

In order to justify the view oW (N4, N_) as a “higher-spin algebra” dff(N,, N_),
we have computed higher-spin representation& @Y., N_) (discrete series), we have
given explicit expressions for coherent states and we have deriéklistructures on flag
manifolds, which are essential ingredients to define operator symbols.

These infinite-dimensional Lie algebras potentially provide a new arena for integrable
field models in higher dimensions, of which we have briefly mentioned gauge dynamics
of higher-extended objects and reminded non-linear SM on flag manifolds. An exhaustive
study of central extensions ¥.,(N., N_) should give us an important new ingredient
regarding the constructions of unitary irreducible representations and invariant geometric
action functionals, just as central extensions of stanifdir@hd Virasoro algebras encode
essential information. This should be our next step.
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